

Titration of <sup>19</sup>F-containing RF inhibitor (Efavirenz) singly <sup>19</sup>F-labeled HIV-1 reverse transcriptase (118 KDa)

## Naima Sharaf, 2014

Structural Biology Department | University of Pittsburgh

Field strength: 600 MHz

## Why is this your favorite spectrum?

I think these data perfectly demonstrate the power of <sup>19</sup>F solution NMR. The <sup>19</sup>F nucleus has high sensitivity, so we can detect <sup>19</sup>F signals from both the large protein and the small inhibitor. The <sup>19</sup>F chemical shifts are exquisitely sensitive to changes in the local environment, thus the <sup>19</sup>F signals corresponding to the protein and inhibitor, which are distinct in chemical environments, are separated by over 20 ppm. <sup>19</sup>F is absent in virtually all biomolecules, so there is no interference by background signals.

I think it is beautiful to simultaneously detect the <sup>19</sup>F signals from probes located in both the protein and inhibitor. I also really love that the line width of the <sup>19</sup>F signal from the inhibitor increases due to the increase in apparent MW of the inhibitor-protein complex.